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Isothermal filling of a plane cavity by a Newtonian fluid with simultaneous anisotropic impregnation of a 
reinforcing layer is considered. 

The study of the process of filling of a plane channel (or cavity) with permeable walls by a fluid is of great 

practical and scientific interest. In nature, this situation can occur in the filling cracks of permeable rocks by fluid. 

As for engineering practice, in recent years the process of forming different tars or plastisols has found wider use 

for producing reinforced products. In this case filling of a forming cavity is accompanied by simultaneous 

impregnation of a reinforcing layer. Low viscosity of the material allows one to rather quickly perform the process 

of product forming with complete impregnation of all porous elements. At the next stage the casting solidifies due 
to material cross-linking during the gelling process [1 ]. 

At present a number of works in the literature are devoted to the formation of composites in closed moulds 

[2-8 ]. However, these publications consider injection to form cavities the entire inner volume of which is occupied 

with some filler. Therefore, cavity filling resides only in the impregnation of a porous material. A mathematical 

model of this process is based, as a rule, on the Darci law [3-8 ] describing fluid flow through a permeable material. 

On forming polymer products with a reinforcing core, a shear flow in the cavity is associated with 

simultaneous impregnation of a porous layer (Fig. 1). A similar problem of low-pressure cast formation of plastisols 

with impregnation of a fabric substrate was solved in [9 ]. Assuming the fabric layer to be very thin the authors of 
[9 ] started from an approximation of "rapid" impregnation 

ix (0 >> lx ( t )  - x 0 ( t ) ,  

where x o is the length of the completely impregnated fabric; lx is the length of the impregnation zone; t is the 
time. 

Thus, it was assumed that impregnation does not occur along the entire length 1, but in a narrow zone 

adjacent to the flow front in the cavity. Fabric impregnation was considered to be one-dimensional and the pressure 

profile over the fabric depth to be linear. AS a result of the solution it was found that the rate of impregnation is 

independent of the axial coordinate, the moving boundaary is linear, and the length of the real zone of impregnation 

lx-xo does not change during filling. The solution is reduced to compact formulas for calculating the time of cavity 
filling and the time necessary for complete impregnation of the fabric layer. 

In the present paper, a solution of the problem of formation with reinforcing layer impregnation in a most 
complete formulation embracing a wide range of possible cases is obtained. 

An isothermal process of low-pressure cast formation of reinforced plastisol products is considered on the 
basis of the scheme shown in Fig. 1, in accordance with which a long plane forming a cavity of height 2h and length 

l is filled through a plane-slot sprue channel under constant pressure P0. The process of cavity filling is accompanied 

by simultaneous impregnation of a porous reinforcing layer with thickness H. As the flow front moves, in a plane 

cavity there takes place two-dimensional propagation of the plastisol through a permeable medium with its own 
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Fig. 1. General scheme of the formation process. 

developing front. The whole forming process can be conventionally divided to three stages. The first stage 

terminates when the flow front in the cavity reaches the opposite wall. The second stage lasts until the reinforcing 

layer is completely impregnated. The third stage ends when the pressure is leveled through the entire volume of 
the product. 

In modeling the considered process, the plastisol was considered to be an incompressible Newtonian fluid 

[10 ]. The fluid flow in a plane cavity obeys the Navier-Stokes equation. Here it should be noted that peculiarities 
in the distribution of velocities in the flow front region are not considered. 

Assuming the pressure in the cavity Pc -- pc(X) to be independent of the transverse coordinate y, we restrict 
ourselves to one equation of motion 

02Uc dpc (1) 
,U ~ 

Oy 2 dx 

which is supplemented by the continuity equation 

Ou c Ov c 
0x + ~ = o .  (2) 

The boundary conditions for the flow in the cavity are 

y = - 2 h :  U c = V c = O ,  (3) 

y = 0 :  u c = u ,  v c = v ,  (4) 

x = tx (~ i pc = o ,  (5) 

h2 PO - PcO (6) 
x = O :  ~cO-3 /~  l o ' 

where pco = pc(x --- 0), K| = ~c(X --- 0). 
When the flow front reaches the opposite wall of the cavity, condition (5) is replaced by the following 

x = l: - 0 .  (7) 
dx 

Modeling of the impregnation of a reinforcing layer was based on the Darci equation [3-8 ] under the 
assumption of possible anisotropy of the impregnated material. This can be caused, for example, by the fact that 
the reinforcing element of the product can be produced by applying a great number of thin plane layers to each 
other. In this case, the permeability along these layers kx differs, as a rule, from the permeability in the 
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perpendicular direction ky. Thus, for the components of the filtration velocity u and v we have, according to the 

Darci law, 

op ap (8) 
t t O x '  l u Oy" 

Substituting (8) into the continuity equation 

O__~u Ov 
ox + Tr = o,  (9) 

we obtain the Laplace equation 

2 

+ k:, = ~  (10) 

which describes the field of fluid pressure in a permeable body. 

It should be noted that the formulation of the boundary condition (4) u -- Uc along with the use of the Darci 

equation has an approximate character. This is related to the fact that the boundary y ,* 0 separates the shear flow 
zone in the channel from one side and the potential flow zone in the porous layer from the other. Thus, discontinuity 

of shear stresses is admitted on a permeable wall. A more correct formulation of the problem is related to the 

presence of some boundary layer inside the porous body near the boundary y -- 0, which represents the transition 
zone between shear and potential flows. In this case the condition of the equality of not only the velocity but shear 

stresses as well is formulated on a permeable wall. However, this approach in the situation considered could lead, 
to our mind, to an unjustified complication of the problem. 

At the first stage of the process, when the impregnation front in the cavity has not reached the remote wall 

(l  x < / )  and the moving impregnation front has not penetrated the full length of a porous layer, the boundary 
conditions for (10) have the form 

y = 0 p = Pc (x),  (11) 

Op 
x = 0  7 x = 0 ,  (12) 

Y=Yo(X) p = 0 .  (13) 

As the impregnation front reaches one or another opposite wall of the cast mould, boundary conditions 
(11)-(13) are supplemented by the following conditions .(the conditions of wall impermeability) 

Op 
y = H  -~y = O, (14) 

Op 
x = l  7 x = O .  (15) 

Integrating (1) twice with allowance for boundary conditions (3) and (4), we find 

uc= /*  d x  - 2  + h - .~-~ y - k x . 

It is not difficult to obtain from (16) an expression for the mean velocity 

-Uc = kx dpc 
d x  f l  , 

(16) 

(17) 
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Fig. 2. Development of impregnation front for isotropic (solid lines, kx = ky = 

7.4.10 -8) and anisotropic (dash lines', ky = 7.4.10 -8, kx = 2ky) permeabilities 

of porous body: I, t = 1.3 sex; 2, 3.0; 3, 7.5; 4, 13.9 sex. Y0, x, m. 
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Fig. 3. Development of impregnation front for anisotropic permeability when 

kx = ky/20; ky = 7.4.10 -8 m2: 1, t = 1.4 sex; 2, 2.9; 3, 7.5; 4, 14.1; 5, 34.5; 

6, t = 76.7 sex. 

where fl = h2 /  (3kx) +0.5. 

From the continuity equation it is easy to find the velocity component Vc and, in particular, its value at y 

= 0  

2 
0 2hk x d Pc 

,,~(y=o)=- Y ~ ay - _ 13 
-2h Ox kt dx  2 

08) 

Substituting (18) into boundary condition (4) and using equation (8), we find an equation for the pressure 

distribution along the plane cavity pc(X): 

2 
d Pc 1 Op 

dx 2 2 h t3 x z Oy 
y=0  

(19) 

where x = ~ .  
Thus, a mathematical model of the considered process is expressed by system of differential Eqs. (19) and 

(10), the solution of which with the given boundary conditions allows one to find the pressure fields in the cavity 

and in a permeable layer for each time instant. In spite of the nonstationary character of the process, time enters 
into all the determining relations as a parameter. Time affects pressure and velocity fields in terms of the variable 

boundaries of the flow region. Thus, for the points of a moving front of impregnation in a porous body we have 

dy 0 1 dx o 1 (20) 
t = V, = - - U ,  e dt e 

where xo, YO are the coordinates of the impregnation front. 
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Fig. 4. Distribution of vertical component of filtration velocity along permeable 

channel wall ( y =  0): 1, t = 10.6 sec, kx, D - k y  = 7.4.10 -8 m2; 2, t = 34.5 sec, 

kx = 7.4.10 -8 m 2, k x = ky/20; 3, t -- 0.2 sec, k x = ky = 10 -7 m. v. 102, m/sec. 

The position of the impregnation front in the cavity is determined by the relation 

dlx (21) 
d--T = Uc. 

A combined solution of the system was performed by an iteration scheme at each step of which Eq. (10) 

was solved by the Seidel method and Eq. (19) by the factorization method [11 ]. 

Concrete calculations illustrating specific features of the solution were performed for P0 -- 105 Pa; e -- 0.5; 

/z -- 3 Pa.sec; 2h = 0.01 m. 

The calculations of the anisotropic impregnation showed that at 

l 
a -  2 h f l  <-I  

the change in the permeability kx at constant ky has practically no affect on the calculation results. Another situation 

arises when a >> 1. It is seen from Fig. 2 that at a -- 100 the two-fold variation of the permeability kx considerably 

changes the profile of the impregnation front and the .total time of product formation. 

Another version of anisotropic impregnation, when kx is much smaller than Icy, is given in Fig. 3. 

Comparison of Figs. 2 and 3 shows that reduction of axial permeability k x leads to both substantial retardation of 

the process of porous body impregnation and propagation of the flow front in a plane cavity. Simultaneously, a 

three- or four-fold decrease in volumetric flow rate of fluid through the inlet section of the cavity occurs (x - 0). 

The reason for this phenomenon is well illustrated in Fig. 4. Here, the distribution of the filtration velocity v over 

the surface of a porous channel wall (y = 0) that corresponds to different time instants but the same length of fluid 

flowing into the cavity (Ix = 0.4 m) is shown for different cases of formation. Curve 1 reflects the case of isotropic 

impregnation corresponding to Fig. 2. This distribution of v(x)  indicates the fact that the main volume of fluid gets 

into the porous body in the section 0 < x < 0.1 m and then, by streamlines, it moves along the porous layer. Thus, 
impregnation is performed here mainly at the expense of the horizontal fluid flow inside the reinforcing layer. 

Curve 2 corresponds to the calculation version presented in Fig. 3. A sharp reduction of k x greatly decreases the 

transmissive capacity of the porous body in a horizontal direction, and the impregnation front is to a great extent 

determined by the fluid fed to the region l x ( t ) - xo ( t ) .  This is the cause of a noticeable reduction of the velocity of 
flow front propagation along the plane cavity. 
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Figures 2 and 3 show that the fulfillment of the condition l x ( t ) - xo( t )  << Ix(t) is still not sufficient to consider 

impregnation as one-dimensional. The following quantity 

1 
- c t H '  

which reflects the ratio of fluid flow rates inside the porous body in the vertical and axial directions, respectively, 
can be used as an applicability criterion of the theory of one-dimensional impregnation. In this case, when ~ >> l, 
horizontal fluid flow through the porous layer can be neglected. To curve 1 in Fig. 4 there corresponds ~ = 0.04, 
and to curve 2, ~ = 0.73. Here the model of one-dimensional impregnation cannot be applied. Curve 3 in Fig. 4 is 
an example of the situation when the horizontal filtration velocity can be neglected (in spite of the fact that kx = 

ky). In this case H = 0.02 m and ~ -- 25. If impregnation is really considered one-dimensional, then the conclusion 
of [9 ] that the filtration velocity v in the region l x - x o  is independent of the axial coordinate is confirmed. 

N O T A T I O N  

P, Pc, fluid pressure in porous medium and in cavity, respectively; u, v, longitudinal and transverse 
components of filtration velocity; uc, vc, longitudinal and transverse components of flow velocity in cavity; ~c, mean 
velocity in cavity; h, half-height of cavity; H, porous layer height; /o, l, length of sprue channel and cast mould, 
respectively; ~, fluid viscosity; yo(t), coordinate of the impregnation front; x0(t), axial coordinate at which Y0 = H; 
e, impregnated material porosity; kx, ky, longitudinal and transverse coefficients of permeability. Dimensionless 

quantities and parameters: a = l/2hfl; fl = h2/(3kx)+0.5;  r = ~ .  
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